

AN10875
IEC 60601-1-8 audible alert generator using the LPC1700

Rev. 01 — 1 October 2009 Application note

Document information

Info Content

Keywords IEC60601-1-8, LPC1700, Cortex-M3, MCB1700, Goertzel, Medical Alerts

Abstract This application note describes an algorithmic method of generating
audible medical alarms that comply with IEC60601-1-8. An overview of
medical alarms is presented and the derivation of the algorithm used is
provided. The algorithm code implementation is then detailed and
discussed including a detailed performance analysis.

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 2 of 31

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

01 20091001 Initial version.

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

1. Introduction

1.1 Background on audible medical alarms
The ACCE Healthcare Technology Foundation recently did a study and survey to
determine the impact of clinical alarms on patient healthcare. Task force chairman Toby
Clark reported a number of limitations of clinical alarms and the impact they have on
patient health. The study searched a database on fatality incidents where the word
“alarm” was included in the product problem description. The search results showed an
average of about 80 deaths a year during the period of 2002 to 2004 may be attributed to
issues with medical alarms. Some of the alarm limitations the study identified by surveys
are outlined below:
• Difficulty in Learning more than 6 alarm signals – ICU and Surgery have >> 6 Alarms
• Difficulty in discerning between high and low priority alarms
• Perceived urgency of alarms may not be consistent with criticality of situation
• False alarms

1.2 Alarms and human behavior
A report on this subject appeared in the British Journal of Anaesthesia titled, “Alarms and
Human Behaviour: Implications for Medical Alarms”.

One of the subjects of the report was identifying the characteristics of an ideal alarm
sound and the suggested knowledge on how those characteristics can be achieved.
Table 1 lists some of the findings.

Table 1. Ideal alarm characteristics and how to achieve an ideal alarm sound
Characteristics of an ideal alarm Relevant finding

Easy to localize The ear uses two mechanisms for localizing sound,
one at high frequencies and one at low frequencies.
Neither functions well in the mid- to-high normal band
of frequencies of normal hearing

Resistant to masking by other sounds Sounds that are acoustically ‘rich’, that is, contain a
number of harmonics, are more resistant to masking

Allow communication Continuous sounds are more likely to be irritating and
interfere with communication

Easy to learn and retain People are poor at retaining the absolute pitch of a
tone and find it difficult to distinguish sounds that vary
only in pitch unless they are heard in close temporal
proximity. In addition, abstract sounds are harder to
learn and retain than environmental sounds or
auditory icons.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 3 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

1.3 IEC60601-1-8 audible and visual alarm standard
To address some of the limitations of medical alarms and to utilize modern research
available on ideal alarm characteristics, the IEC (International Electrotechnical
Commission) has provided the first focused standard on audible and visual alarms for
medical equipment, the IEC60601-1-8. Focusing on the audible alert portion of the
document, the IEC60601-1-8 standard requires a specific melody correspond with a
specific physiological function. This ensures that the number of alarms is contained,
instead of varying across different manufacturers. It also limits the number of alarms to
eight and uses a cautionary and an emergency version of each. The emergency (high
priority) version uses a five note melody that is repeated. The cautionary (medium
priority) alarm uses the first three notes of the high priority version and does not repeat.
Some of the principles of designing perceived urgency into sound have been applied to
these signals such as a slower rise and fall times on medium priority tones compared to
high priority tones and a faster tempo for the high priority alarms. An optional low priority
alarm tone is also provided in the standard that sounds only two notes. The high priority
melody corresponding to the physiological function it represents is given in the table
below. (Note: high priority melodies repeat once.)

Table 2. Audible alert types and associated melodies
Alarm High priority melody Mnemonic notes

General C4-C4-C4-C4-C4 Fixed pitch

Cardiac C4-E4-G4-G4-C5 Trumpet call; Call to arms; Major chord

Artificial Perfusion C4-F#4-C4-C4-F#4 Artificial sound; Tri-tone

Ventilation C4-A4-F4-A4-F4 Inverted major chord; Rise and fall of the lungs

Oxygen C5-B4-A4-G4-F4 Slowly falling pitches; Top of a major scale;
Falling pitch of an oximeter

Temperature C4-E4-D4-F4-G4 Slowly rising pitches; Bottom of a major scale;
Related to slow increase in energy or (usually)
temperature

Drug delivery C5-D4-G4-C5-D4 Jazz chord (inverted 9th); Drops of an infusion
falling and "splashing"

Power failure C5-C4-C4-C5-C4 Falling or dropping down

The melody note C4 in the above table refers to middle C, with C5 being one octave
above middle C. The IEC states that you do not have to use those specific notes. As long
as the fundamental note is within the specified frequency range, the alarm melody could
be transposed to different keys and still be compliant with the specification. The IEC does
state that the note must consist of the fundamental tone and at least 4 harmonics. The
fundamental and 4 harmonics must not differ by more than 15 db in amplitude.

The IEC60601-1-8 Audible alarm standard provides tones that are rich in harmonics to
make them easy to localize and resistant to masking. There are a limited amount of
categories and corresponding melodies to make the different alarm sequences easier to
learn. And, the priority of an alarm determines the number of notes in the alarm and the
dynamic characteristics of the note sequence. This makes it easy to determine the

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 4 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

criticality of the alarm. Thus, the IEC60601-1-8 standard addresses many of the
limitations of previous alarms and will hopefully contribute to improved patient safety.

2. Generating the IEC60601-1-8 alarms algorithmically
Many of the present IEC60601-1-8 implementations playback a recorded version of the
alarm that is stored in memory. The drawback to this is it takes up a lot of memory space
to store the files as well as the program space to control the playback. Generating the
alarms algorithmically is a much more efficient method in terms of memory usage and
allows a lot of flexibility in being able to customize the tones while still meeting
IEC60601-1-8 specifications.

2.1 Functional resources required on chip
To synthesize the alarm tones on chip requires the following functions to be implemented
in firmware:
• Timing Generator – This provides the timing reference to digitally construct the alarm

tones effectively setting the internal sample rate and the DAC output rate. This also
provides the time reference for the note sequencer and envelope generator.

• Envelope Generator – This controls the rise time, fall time, and amplitude of the note
pulses. The rise and fall time of a note is also a function of the alarm priority.

• Note Sequencer – This sequences through the correct notes at the correct tempo
based on the type of alarm and the priority level.

• Note generator – This generates multiple sine wave tones that are combined to form
the fundamental and harmonics that make up the alert note.

For the demonstration code, a menu driven user interface is provided via UART1 and a
terminal program. This includes the different menus, a serial port driver, and a simple
command handler.

2.1.1 Timing generator
This utilizes the on chip timer to set the sample rate / DAC output rate for the algorithmic
tone generator. The timer is set up to generate an interrupt every 40 μs for a 25 ksps
DAC output rate. This was chosen to be above the audible range and much higher than
the Nyquist frequency to allow low cost filters on the DAC. A software timer in the
interrupt service routine also provides a 1 ms timeout that is used by the envelope control
functions and note sequencer as described below.

2.1.2 Envelope generator
The envelope generator controls the dynamic volume of the tones being generated.
Since the IEC specification includes rise and fall times for the tones, a variable is
generated that is time dependent. When a note is turned on, the value of the envelope
variable increases from 0 to the maximum set level at a controlled rate. The same
happens when the note is turned off; the level will decrease at a controlled rate until it
reaches 0. The rise and fall times are programmable and the medium and low priority
tones have a slower rise/fall time than the high priority tones. The envelope generator
uses the 1 ms timeout as its timing reference.

2.1.3 Note sequencer
The IEC 60601-1-8 standard specifies the relative note sequences and temporal
characteristics for the tones as a function of the classification and priority of the alarm.
The note sequencer outputs the tones with the right duration and spacing to meet the
 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 5 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

temporal characteristics for a given priority of alarm. For high priority alarms, the
sequence is specified to be a 5 note sequence that is repeated once for a total of 10
notes. The medium priority alarm is a 3 note sequence and is not repeated. The three
note sequence for a given alarm type is the same as the first three notes of the high
priority sequence to make learning the alarms easier. The tempo of the high priority
alarm is faster than the medium priority alarms. The different number of notes and tempo
differences make it easy to discern the priority of the alarm.

2.1.4 Note generator
In order to make it easy to comply with the standard, the fundamental and 4 harmonics
will be generated as separate sine waves and combined digitally. There are many ways
to generate sine waves on chip including sine table look up, math library algorithms,
Taylor series expansions, and recursive oscillators. The recursive oscillator is an IIR filter
structure with the proper coefficients to oscillate given the proper initialization. Since this
is one of the more efficient methods, and is also very low distortion, the recursive
oscillator will be used to generate the fundamental and 4 harmonics that are required for
each note.

2.1.4.1 The Goertzel algorithm

One of the most useful recursive methods is the Goertzel Algorithm, a simple two tap IIR
filter shown in Fig 1. This is a very useful algorithm as it can also be used as a narrow
band tone detector in addition to a sine wave generator. Analyzing the algorithm as an
oscillator we want to be able to calculate the sine of an angle as we increment the angle
in fixed steps. Assuming we can calculate the sine of an angle from the two previous
incremental values in the sine series, equation (1) can be written for Fig 1:

b)1)-(n sin(a y b)2)-(n sin(a x b)n sin(a ∗+∗+∗+∗=∗+ (1)

In equation (1), x and y are the coefficients of the IIR filter, ‘a’ is the starting angle, and ‘b’
is the incremental angle. To find the values of the two coefficients, we will first re-arrange
and simplify equation 1 as shown below in equation 2.

b)1 - bn sin(a y b)2 - bn sin(a x b)n sin(a ∗∗+∗+∗∗+∗=∗+ (2)

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 6 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 1. IIR filter

Continuing to expand equation 2 by substituting the following trigonometric identity:

sin(b)cos(a) cos(b)sin(a) b)sin(a ∗+∗=+ (3)

We get:

 sin(b)] b)n cos(a - cos(b) b)n sin(a [y
 b)]sin(2b)n cos(a - b)cos(2 b)n sin(a [x b)n sin(a

∗∗+∗∗+∗
+∗∗∗+∗∗∗+∗=∗+

 (4)

Re-arranging:

b)n cos(a sin(b)] y b)sin(2 [x
- b)n sin(a cos(b)]y b)cos(2[x b)n sin(a

∗+∗∗+∗∗
∗+∗∗+∗∗=∗+ (5)

For this to be true for all n, we must have the two expressions in brackets satisfy:

0 sin(b)] y b)sin(2 [x
1 cos(b)]y b)cos(2 [x

=∗+∗∗
=∗+∗∗ (6)

That, when solved, yields the coefficients for the recursive IIR filter:

)2 angle step theis b (where cos(b)2 y

1- x

samplef
fπ∗=

=
 (7)

Substituting this back into the original equation yields:

 b)1)-(n sin(a(b)cos 2 b)2)-(n sin(a - b)n sin(a ∗+∗∗+∗+=∗+ (8)

Re-arranging:

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 7 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

 b)2)-(n sin(a- b)1)-(n sin(a cos(b)2 b)n sin(a ∗+∗+∗∗=∗+ (9)

Substituting our sample value Y[n] = sin(a+nb) yields:

 2]-y[n - 1]-y[n b cos 2 y[n] ∗∗= (10)

So, as a result of one of the coefficients being equal to -1, the calculations at each step
angle increment requires only one multiplication and one subtraction involving the results
of the two previous calculations. (This assumes the coefficient is calculated ahead of
time.) After executing the equation above, the y[-1] value is moved into the y[-2] variable
and the calculated y[n] value is moved into the y[-1] variable to prepare for the
calculations at the next step angle. This makes for very efficient operation for the Cortex-
M3 as we will see later in the code implementation.

2.1.4.2 Analysis of the Goertzel algorithm

If we want to analyze the Goertzel algorithm, we can assume it has an input x(n) and
write the transfer function as follows:

 x[n] y[n2] - y[n1] b cos 2 y[n] +∗= (11)

If we take the Z transform of this we first write the equation as follows:

X[Z] Z2) Z1) b cos (2 - Y[Z](1 =+∗ (12)

The transfer function can then be written as:

21b) cos 2(1
1

][
][)(−− −−
==

ZZZX
ZYZH (13)

Factoring out the roots:

)1)(1(
1

][
][)(11 −−−+ −−
==

ZeZeZX
ZYZH bibi (14)

Thus, the Goertzel algorithm’s transfer function has poles where:

0)1(
0)1(

1

1

=−

=−
−−

−+

Ze
Ze

bi

bi

 (15)

Since the magnitude of Z is ‘1’, the magnitude of the transfer functions poles is 1, placing
them on the unit circle of the Argand diagram. The location of the two poles is then:

bibe
bibe

bi

bi

sincos
sincos

−=

+=
−

+

 (16)

We know that the impulse response of a feedback system such as an IIR filter has the
following characteristics as a function of the pole locations relative to the unit circle in the
Z domain:

- if the poles are inside the unit circle, the transient terms will die away
- if the poles are on the unit circle, oscillations will be in a steady state
- if the poles are outside the unit circle, the transient terms will increase

So, with the poles on the unit circle, this meets the criteria for steady state oscillation.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 8 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

2.1.4.3 Goertzel initialization

In order for the Goertzel to function as an oscillator, the y[-1] and y[-2] values must be
initialized. If we set y[-1] = 0, then y[-2] would have the value of one incremental sine
value before the zero crossing, or:

sample

output

F
F

Ay

y

π2sin]2[

0]1[

∗=−

=−

 (17)

The coefficient must also be calculated as follows in equation 18.

sample

output

F

F
coef π2cos2 ∗= (18)

To use the Goertzel Algorithm as a tone detector, both y[-1] and y[-2] would be initialized
to ‘0’. The input would then be summed into the calculation. After a certain number of
samples, the input’s amplitude at the detect frequency can be calculated from the
following:

222

det

det

2sin]2[

2cos]2[]1[

imaginaryrealmagnitude

F
Fyimaginary

F
Fyyreal

sample

ect

sample

ect

π

π

 (17)

There are optimized versions of this to simplify the math, but this explains the principle.
To use this as a continuous tone detector, after making this calculation, y[-1] and y[-2]
would again be set to zero and the next acquisition and detection sequence would
proceed.

3. Code implementation - audible alarm synthesis

3.1 Timing generator code
The timing generator code consists of the initialization for Timer 0 and the interrupt
service routine to handle Timer 0 interrupts. This provides the 40 μs (25 kHz) time base
for generating the alarm tones as well as a software counter to generate a 1 ms time
base that is used by the envelope generator and the note sequencer.

3.1.1 Timer 0 initialization
Timer 0 is initialized to generate a match interrupt every 40 μs to provide the 25 kHz
sample rate. The initialization code is shown below.
1 void init_timer (void)
2 {
3 TIM0->MR0 = 959; // 40 uSec = 960-1 counts (25ksps @ 24 mhz)
4 TIM0->MCR = 3; // Interrupt and Reset on MR0
5 TIM0->TCR = 1; // Timer0 Enable
6 timeval=0; // variable initializations
7 mscount=0;

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 9 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

8 sequence = 0;
9 }

3.1.2 Timer 0 interrupt service routine
The Timer 0 interrupt service routine is the heart of this application since it provides all
the timing for tone generation as well as tone sequencing. The code tests to see if the
envelope is on, and if so, will output tones. In addition to clearing the interrupt, a software
counter is incremented until a 1 millisecond timeout is reached. Every time the 1 ms
timeout occurs, the state of the sequencer is incremented and any required actions will
be taken by the envelope generator (to be discussed later). The code listing for the Timer
0 Interrupt service routine is shown below.
10 void TIMER0_IRQHandler (void)
11 {
12 if (envelope_on)
13 {
14 OutputTones(active_note,note_level); // params are set in sequencer
15 }
16 TIM0->IR = 1; // Clear interrupt flag
17
18 timeval++;
19 if (timeval == 25) // 1 millisecond interval @ 25 khz sample rate
20 {
21 if (sequence)
22 {
23 switch (priority)
24 {
25 case 1:
26 HighPriSequence(alarm);
27 break;
28 case 2:
29 MedPriSequence(alarm);
30 break;
31 case 3:
32 LowPriSequence(alarm);
33 break;
34 case 4:
35 TestSequence(alarm);
36 break;
37 }
38 }
39 mscount++; // increment ms counter
40 timeval = 0; // clear interval counter
41 EnvelopeControl(); // envelope actions required?
42 }
43
44 }

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 10 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

3.2 Envelope control function
The envelope generator controls the dynamic level of the tones as the IEC60601-1-8
requires rise times and fall times to be within a specified range. Also, the first note in an
alarm sequence is supposed to be lower in amplitude than the others. The envelope
generator output is the variable ‘envelope’. When a tone is off, envelope = 0. When a
note is turned on in a sequence, the envelope variable will increase at a set rate every
millisecond until it reaches the maximum level set. When a note is turned off, the tone
continues, but the envelope variable begins to decrease at its set rate until it reaches ‘0’.
The envelope variable will be used as the volume control for the dynamic characteristics
of the note. The listing for the envelope control function is given below:
45 void EnvelopeControl(void)
46 {
47 if (note_on)
48 {
49 if (envelope >= note_level)
50 {
51 envelope = note_level;
52 }
53 else
54 {
55 if (priority == 1)
56 {
57 envelope += HP_RISE; // high priority risetime control
58 }
59 else
60 {
61 envelope += MP_RISE; // Medium priority risetime control
62 }
63 }
64 }
65 else
66 {
67 if (envelope >0)
68 {
69 if (priority == 1)
70 {
71 envelope -= HP_FALL; // high priority falltime control
72 }
73 else
74 {
75 envelope -= MP_FALL; // Medium priority falltime control
76 }
77 }
78 }
79 if ((envelope <= 0)&& (note_on == 0)&& (envelope_on == 1))
80 {
81 envelope = 0;
82 envelope_off = 1; // synchronize with zero cross
83
84 }

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 11 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

85 }

3.3 Note sequencer functions
The note sequencer provides the timing and note sequencing for the for the different
alarm melodies specified in IEC60601-1-8. The high priority alarms consist of a 5 note
sequence that is repeated. The medium priority version of the same alarm category uses
the first three notes of the high priority alarm and is not repeated. The note spacing and
duration is shorter for the high priority alarms as this gives a higher sense of urgency.
The code to implement these is shown below for the high priority example. The 1 ms time
base, discussed in section 3.1.2, increments the sequence counter. As a result, the
numbers associated with each case statement are in milliseconds to facilitate making
adjustments in the timing. The medium and low priority versions use the same basic
switch statement format and similar function calls, but different timing states are used in
the associated case statements since the tempo is different.
86 void HighPriSequence (unsigned char alarm_type)
87 {
88 switch (mscount)
89 {
90 case 1:
91 active_note = tune_sequence [alarm_type][0]; // 1rst note of sequence
92 note_level = 200;
93 TurnOnNote();
94 break;
95 case 145: //145 ms (trise +tduration)
96 note_on = 0; // begin decay as note turns "off"
97 break;
98 case 224:
99 active_note = tune_sequence [alarm_type][1]; // 2nd note of sequence
100 note_level = 255;
101 TurnOnNote();
102 break;
103 case 368:
104 note_on = 0; // begin decay as note turns "off"
105 break;
106 case 447:
107 active_note = tune_sequence [alarm_type][2]; // 3rd note of sequence
108 note_level = 255;
109 TurnOnNote();
110 break;
111 case 591:
112 note_on = 0; // begin decay as note turns "off"
113 break;
114 case 835:
115 active_note = tune_sequence [alarm_type][3]; // 4th note of sequence
116 note_level = 255;
117 TurnOnNote();
118 break;
119 case 929:
120 note_on = 0; // begin decay as note turns "off"
121 break;

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 12 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

122 case 1008:
123 active_note = tune_sequence [alarm_type][4]; // 5th note of sequence
124 note_level = 255;
125 TurnOnNote();
126 break;
127 case 1152:
128 note_on = 0; // begin decay as note turns "off"
129 break;
130
131 case 1200: // allows for fall time of envelope
132 if (sequence == 2)
133 {
134 sequence = 0;
135 mscount = 0;
136 }
137 break;
138 case 1671:
139 if (sequence == 1) // If this is the first time through, repeat
140 {
141 sequence++;
142 }
143 mscount = 0;
144 break;
145 }
146 }
147 void TurnOnNote(void)
148 {
149 envelope = 0;
150 note_on = 1;
151 envelope_on = 1;
152 }

3.4 Note generator functions
For the note generator, there is a lot of data to be processed dealing with multiple
frequencies and multiple sine wave generators. If we organize the data variables and
constants that are associated with each frequency in arrays that have the same
dimensions, we can then just use a simple recursive function to “walk” through the array
data.

3.4.1 Note generator definitions
In the definitions we define several fixed and floating point constants, as well as defining
a structure tag and two arrays with one of these being an array of structures.
153 #define Amp 200 // Output Amplitude
154 #define PI 3.1415926
155 #define Fsample 25000 // Timer Reload Frequency
156
157 struct wave { // structure tag for Sine Generator
158 short coef; // IIR filter coefficient
159 long y1; // y[-1] value
160 long y2; // y[-2] value

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 13 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

161 };
162
163 struct wave Waves[9][5]; // 'Waves' is an array of structures whose values are
164 // calculated during initialization
165 long output;
166 long output_old;
167
168 enum {C4,D4,E4,F4,Fsharp4,G4,A4,B4,C5}; // Can address array rows with notes
169
170 float const FreqArray[][5]= {{261.626,523.252,784.878,1046.50,1308.13}, // C4
171 {293.67,587.34,881.01,1174.7,1468.3}, // D4
172 {329.63,659.26,988.89,1318.52,1648.15}, // E4
173 (349.23,698.46,1047.69,1396.9,1746.15}, // F4
174 {369.99,739.98,1109.97,1479.96,1849.95}, // FSharp4
175 {392.00,784.00,1176.0,1568.0,1960.0}, // G4
176 {440.000,880.00,1320.0,1760.00,2200.00}, // A4
177 {493.88,987.76,1481.64,1975.5,2469.4}, // B4
178 {523.251,1046.50,1569.756,2093.00,2616.25}}; // C5
179
180 unsigned char ToneWeights[] = {255,255,255,255,255};// used for test and
181 // adjusting harmonic levels

The advantage of using a structure of the variables and coefficients used in the algorithm
is that it allows us to have a similar array organization in the structure array and the
frequency constant array. The one for one relationship between the constant frequency
array and the algorithm structure array makes it easy to use similar indexes for both
arrays when initializing each frequency.

3.4.2 Note generator initialization
As mentioned in section 2.1.4.3, for the Goertzel algorithm to oscillate, the y[-1] and
y[-2] values must be initialized in addition to the coefficient. This must be done for the
structure variables that correspond to each frequency. The code for the initializations is
shown below. Each of the 5 structures in a row is initialized then each additional row is
initialized until the entire array of structures is initialized. In this demo application, these
calculations are done during reset initialization. However, if you were optimizing this,
code could be saved by making these calculations ahead of time and storing the results
as constants in flash memory. This is because if the floating point and sine/cosine
algorithms that are needed from the math library that would not be required with pre-
computed initialization value. These library routines use about half of the code space
used by this application. The coefficient and initialization values are scaled by 32768
(signed short). Also, the coefficient calculation does not include the 2X factor shown in
the equation (18). This is to keep the size of the coefficient to a signed short to minimize
storage requirements. The 2X is included in the final Goertzel calculation where the
output is scaled by >>14 instead of >>15, effectively multiplying by 2.
182 void InitToneCoefArray(void) // initialize the structure for each frequency
183 {
184 unsigned char n;
185 unsigned char j;
186 for (j=0;j<9;j++) // Initialize all nine scale tones (C4-C5)
187 {
188 for (n=0;n<5;n++) // fundamental and 4 harmonics for IEC60601-1-8

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 14 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

189 {
190 Waves[j][n].coef = ((cos (2*PI*(float)(FreqArray[j][n]/Fsample)))* 32768);
191 Waves[j][n].y1 = 0;
192 Waves[j][n].y2 = ((sin (2*PI*(float)((FreqArray[j][n]/Fsample))) *

 Amp * 32768));
193 }
194 }
195 }

3.4.3 Multiple sine wave generation, summing, and DAC output
Once the algorithm variables and coefficients have been initialized it is easy to then
make the Goertzel calculations to generate the fundamental and 4 harmonics by simply
incrementing through a row in the array of structures and summing the five values. As
mentioned in section 3.4.2, line 204 includes scaling by >>14 instead of >>15 to factor in
the 2X that was left out of the coefficient initialization.
196 void GenerateMultiTone (struct wave *t)
197 {
198 long y;
199 unsigned char i;
200 unsigned char env_weights;
201 output = 0; // clear output accumulator
202 for (i=0;i<5;i++) // cycle through the 5 structures in the array
203 {
204 y = ((t->coef *(long long)(t->y1)>>14)) - t->y2; // Goertzel Calculation
205 t->y2 = t->y1; // store for next time
206 t->y1 = y; // store for next time
207 env_weights = envelope * ToneWeights[i]>>8;
208 output += ((t->y1* env_weights)>>8); // sum fundamental and harmonics
209 t++; // increment structure pointer
210 }
211 DAC->DACR = ((output >> 10) & 0xFFC0) + 0x8000; //make unsigned & output to DAC
212 if ((output >= 0)&& (output_old <= 0)) // zero crossing detect
213 {
214 if (envelope_off && (note_on==0))
215 {
216 envelope_on = 0; // synchronizes turn off with zero cross
217 envelope_off = 0; // reset envelope flag
218 }
219 }
220 output_old = output;
221 }
222
223 void OutputTones(unsigned char note, unsigned char level)
224 {
225 note_level = level;
226 GenerateMultiTone (&Waves[note][0]);
227 }

Once the function has done the calculations for all 5 structures in the array row, the
summed value is scaled, formatted, and converted from a signed to unsigned value and
before being sent to the DAC. Since these calculations are performed at each 25 kHz
timer interrupt (when a note is active), the DAC output rate is 25 kHz. This allows
 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 15 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

inexpensive output filters as this is approximately a 9X over-sampling relative to the
highest sine wave frequency being generated.

3.5 User / command interface
For the demonstration firmware that was written for this application, the Keil MCB1700
was targeted and UART1 is used to provide a menu driven terminal interface to activate
the different alarms. To keep the application note brief, the UART code is not shown. A
code example of one of the command functions is shown as an illustration of how the
alarm sequences are initiated using this firmware.
228 void cmd_test(void)
229 {
230 if (proc_cmd)
231 {
232 switch (priority)
233 {
234 case 1:
235 HPCommnds();
236 break;
237 case 2:
238 MPCommnds();
239 break;
240 case 3:
241 LPCommnds();
242 break;
243 case 4:
244 TestCommnds();
245 break;
246 }
247 }
248 }
249 void HPCommnds(void)
250 {
251 switch (rcv_buf)
252 {
253 case '1':
254 putstr ("High Priority General Alarm\n\n");
255 alarm = GENERAL;
256 sequence = 1;
257 break;
258 case '2':
259 putstr ("High Priority Cardiac Alarm\n\n");
260 alarm = CARDIOVASCULAR;
261 sequence = 1;
262 break;
263 case '3':
264 putstr ("High Priority Artificial Perfusion Alarm\n\n");
265 alarm = PERFUSION;
266 sequence = 1;
267 break;
268 case '4':

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 16 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

269 putstr ("High Priority Ventilation Alarm\n\n");
270 alarm = VENTILATION;
271 sequence = 1;
272 break;
273 case '5':
274 putstr ("High Priority Temperature Alarm\n\n");
275 alarm = TEMPERATURE;
276 sequence = 1;
277 break;
278 case '6':
279 putstr ("High Priority Oxygen Alarm\n\n");
280 alarm = OXYGEN;
281 sequence = 1;
282 break;
283 case '7':
284 putstr ("High Priority Drug Delivery Alarm\n\n");
285 alarm = DRUG_DELIVERY;
286 sequence = 1;
287 break;
288 case '8':
289 putstr ("High Priority Equipment/Supply Failure Alarm\n\n");
290 alarm = POWER_FAIL;
291 sequence = 1;
292 break;
293 default:
294 putstr ("Command not supported\n\n");
295 break;
296 }
297 proc_cmd=0; // reset command status
298 mscount = 0;
299 }

As you can see, all that is needed to start the alarm sequence is to set the alarm type
using the ‘alarm’ variable and enable the sequencer by setting the ‘sequence’ variable to
a non-zero value. The menu structure will be shown later in section 4.

The entire code package for this application is available from NXP.

4. IEC60601-1-8 audible alarm demo operation

4.1 Reset menu
When the MCB1700 is loaded with the IEC Audible Alarm firmware, the user is prompted
with the following menu after reset when the COM1 interface on the MCB1700 is
connected to a PC running HyperTerminal, TeraTerm, or similar terminal program. The
settings are 9600, one start bit, one stop bit and no parity or flow control.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 17 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 2. Reset menu

If we press ‘h’, we get the menu shown in Fig 3.

Fig 3. High priority alarm menu

Pressing any number between 1 and 8, and, pressing enter, will start the high priority
alarm sequence for that corresponding alarm type. Similar menu actions are taken for the
Medium Priority, low Priority, and Test menus as shown in Fig 4, Fig 5, and Fig 6.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 18 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 4. Medium priority menu

Fig 5. Low priority menu

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 19 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 6. Test menu

The commands in the test menu provide short 1 second bursts of the highest and lowest
frequency tones with harmonics as well as the highest and lowest single frequency tones
needed for this application. This is to facilitate making the performance tests. The single
tones are generated by making all the values in the ‘ToneWeights’ array = 0, except the
isolated tone being generated. Command 5 resets all the ToneWeights array values to
their initial values.

5. External hardware requirements

5.1 External DAC filter
A simple 3-pole RC filter was added to filter the 25 kHz sample rate component from the
signal for the tests done in this applications note. The filter used is shown in Fig 7 and
provides a cutoff frequency in the range of 9 kHz to10 kHz. Since the sample rate is
above the normal audio hearing range, cost sensitive applications may be able to get by
without a filter. Also, a coupling capacitor is generally required after this network, as the
DC level of the DAC is nominally 1.65 V.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 20 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 7. Three pole RC DAC filter

If this is not going to a high impedance input, or if this signal is fed externally, a buffer is
recommended.

6. Performance analysis
Using the output filter described in section 5.1, spectrum analysis tests were performed
to verify the spectral content of the signal and estimate signal to noise ratios. In addition
Oscilloscope captures were made to show the rise fall and other temporal characteristics
of the alert tones generated. The output of the MCB1700 DAC was fed to a Mackie
CR1604-VLZ Audio Mixer (EQ set for flat frequency response) to provide the correct
levels to the internal Sigmatel Codec in a Dell laptop. The laptop was running True
Audio’s TrueRTA Spectrum Analyzer Software package. The Test Menu, detailed earlier,
was used to provide the test tone bursts used in the analysis.

6.1 Spectral analysis of multiple tone generation with DAC filter
The following Spectrum Analyzer captures are made with the board output taken after a
three pole, 10 kHz RC filter detailed in section 5.1.

The spectrum of the lowest frequency tone in the application (C4) with harmonics is
shown below in Fig 8. As you can see, the harmonics are very close in amplitude to each
other. This will easily meet the IEC 60601-1-8 specifications as they only require the
harmonics to be within 15dB of each other. The signal to noise ratio looks to be in excess
of 55dB providing very good noise performance also. The lack of other harmonics
showing up in the spectral analysis also demonstrates the low distortion of the sine
waves generated by the Goertzel algorithm.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 21 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 8. C4 with harmonics

Fig 9 shows the spectral analysis of the highest frequency tone in the application (C5)
with harmonics.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 22 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 9. C5 with harmonics

As you can see, the spectrum of the C5 tone with harmonics also has good signal to
noise ratios and low distortion while keeping the amplitude of the fundamental and
harmonics within a couple of dB.

6.2 Envelope timing
The IEC specifications state the rise time and fall time requirements of the notes
generated is a function of the duration of the note (rise time = 10% to 20% of Td). Since
the duration of a medium priority note is longer than a high priority note, the rise time
should be faster on the high priority notes that are generated. The spec allows more
flexibility for fall times, so the fall time for this demo application is chosen to be the same
as the rise time. Fig 10 shows an oscilloscope capture of the rising edge of a high priority
note. The falling edge is shown in Fig 11. The rise and fall time for the high priority notes
in this example is around 20 milliseconds. A capture of the medium priority rise time is
shown in Fig 12 and the fall time is shown in Fig 13. The rise and fall time of the medium
priority notes is around 30 ms. These can be easily adjusted by changing a code
constant if needed.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 23 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 10. High priority rise time

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 24 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 11. High priority fall time

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 25 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 12. Medium priority rise time

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 26 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 13. Medium priority fall time

6.3 Sequence timing
Fig 14 shows the timing of a High Priority Sequence.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 27 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 14. High priority sequence timing

We can see that the high priority sequence has a little more delay between the 3rd and 4th
notes of the sequence, and an even longer delay between the repeating 5 note
sequence. This is per the IEC60601-1-8 temporal specifications. Fig 15 shows the
medium priority sequence timing.

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 28 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Fig 15. Medium priority sequence timing

We can see that the medium priority sequence only has three notes and the spacing
between the notes is greater than the spacing of the first three notes in the high priority
sequence. This is also in compliance with the IEC60601-1-8 specification.

7. Conclusions
The method of generating the medical alarms presented in this application note provides
an efficient, low cost, high performance method of generating audible medical alerts that
comply with the IEC60601-1-8 standard. The specification also states that subtle degrees
of equipment differentiation in terms of alarm sounds can be advantageous to the
operator. In addition to meeting the requirements of the standard, the firmware
implementation provided here allows easy customization of the tones while still staying
within the specification parameters. The NXP LPC17xx family of ARM Cortex-M3
microcontrollers provides very high speed performance and deterministic timing that is
ideal for implementing algorithms like the one used in this example. With the LPC1768
processor running at 96 MHz, this application uses around 8 % of the available processor
bandwidth and less than 10K of code space. This leaves ample code space and
processing power for additional applications. As a result, it is now very easy to add
support for the IEC60601-1-8 standard to any medical electronic application.

AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 29 of 31

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

 AN10875_1 © NXP B.V. 2009. All rights reserved.

Application note Rev. 01 — 1 October 2009 30 of 31

8. Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations
or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of
such information.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is for the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

8.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10875
 IEC 60601-1-8 audible alert generator using the LPC1700

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

 © NXP B.V. 2009. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, email to: salesaddresses@nxp.com

Date of release: 1 October 2009
Document identifier: AN10875_1

9. Contents

1. Introduction ...3
1.1 Background on audible medical alarms3
1.2 Alarms and human behavior3
1.3 IEC60601-1-8 audible and visual alarm standard

...4
2. Generating the IEC60601-1-8 alarms

algorithmically ...5
2.1 Functional resources required on chip5
2.1.1 Timing generator ..5
2.1.2 Envelope generator..5
2.1.3 Note sequencer..5
2.1.4 Note generator ...6
2.1.4.1 The Goertzel algorithm.......................................6
2.1.4.2 Analysis of the Goertzel algorithm......................8
2.1.4.3 Goertzel initialization ..9
3. Code implementation - audible alarm synthesis

..9
3.1 Timing generator code9
3.1.1 Timer 0 initialization ...9
3.1.2 Timer 0 interrupt service routine.......................10
3.2 Envelope control function.................................11
3.3 Note sequencer functions.................................12
3.4 Note generator functions..................................13
3.4.1 Note generator definitions13
3.4.2 Note generator initialization..............................14
3.4.3 Multiple sine wave generation, summing, and

DAC output...15
3.5 User / command interface16
4. IEC60601-1-8 audible alarm demo operation ..17
4.1 Reset menu..17
5. External hardware requirements......................20
5.1 External DAC filter..20
6. Performance analysis21
6.1 Spectral analysis of multiple tone generation with

DAC filter..21
6.2 Envelope timing..23
6.3 Sequence timing ..27
7. Conclusions...29
8. Legal information ..30
8.1 Definitions ..30
8.2 Disclaimers...30
8.3 Trademarks ..30
9. Contents...31

	1.1 Background on audible medical alarms
	1.2 Alarms and human behavior
	1.3 IEC60601-1-8 audible and visual alarm standard
	2.1 Functional resources required on chip
	2.1.1 Timing generator
	2.1.2 Envelope generator
	2.1.3 Note sequencer
	2.1.4 Note generator
	The Goertzel algorithm
	2.1.4.2 Analysis of the Goertzel algorithm
	2.1.4.3 Goertzel initialization

	3.1 Timing generator code
	3.1.1 Timer 0 initialization
	3.1.2 Timer 0 interrupt service routine

	3.2 Envelope control function
	3.3 Note sequencer functions
	3.4 Note generator functions
	3.4.1 Note generator definitions
	3.4.2 Note generator initialization
	3.4.3 Multiple sine wave generation, summing, and DAC output

	3.5 User / command interface
	4.1 Reset menu
	5.1 External DAC filter
	6.1 Spectral analysis of multiple tone generation with DAC filter
	6.2 Envelope timing
	6.3 Sequence timing
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Trademarks

